Abstract:Ultra-high performance concrete with coarse aggregate (UHPC-CA) and reactive powder concrete (RPC), with a compressive strength of over 140 MPa, were exposed to high temperature for determining their residual compressive strengths, splitting tensile strengths and residual fracture energies experimentally. The results indicate that at each target temperature, the residual compressive strength of UHPC-CA was higher than that of RPC, but the residual splitting tensile strength and fracture energy of UHPC-CA were lower than those of RPC. With the increase of target temperature, the residual strength of both ultra-high performance concretes increased first and then decreased, while the residual fracture energy of both concretes decreased. Compared to unheated specimens at room temperature, the increases of the peak residual compressive strength and the peak residual splitting tensile strength of RPC specimens at the critical temperature of 300℃ were 26.8% and 19.3%, respectively, while those the corresponding increases of the two strengths of UHPC-CA subjected to the critical temperature of 400℃ and the target temperature of 300℃ were 34.0% and 6.8%, respectively. After experiencing the high temperature of 800℃, the losses in compressive strength and splitting tensile strength of RPC were 72.3% and 81.4%, respectively, while those of UHPC-CA were 70.2% and 84.9%. The results suggest that for building structures with fire-resistance requirements, UHPC-CA should be used in compression members, while RPC is more appropriate for bending-resistant members.
朋改非 杨娟 石云兴. 超高性能混凝土高温后残余力学性能试验研究[J]. 土木工程学报, 2017, 50(4): 73-79.
Peng Gaifei Yang Juan Shi Yunxing. Experimental study on residual mechanical properties of ultra-high performance concrete exposed to high temperature. 土木工程学报, 2017, 50(4): 73-79.