稿件采编系统





  文章检索
高级检索
  期刊信息
主管:住房和城乡建设部
主办:中国土木工程学会
收录:
Ei核心期刊
中文核心期刊
中国科技核心期刊
中国科学引文数据库核心期刊
中国学术期刊(光盘版)及(网络版)
RCCSE中国权威学术期刊
国内总发行:北京报刊发行局
订购:全国各地邮局
邮发代号:2-582
国外代号:M288
广告经营许可证号:
京海工商广字第8184号
     编辑部公告

《土木工程学报》网络首发数据公布

  38日,《土木工程学报》收到来自中国知网统计的网络首发数据。自2018年以来,《土木工程学报》在中国知网线上首发篇数114,刊印首发篇数359,合计首发篇数473。首发期间,《土木工程学报》文章总下载量13万次,单篇最高下载量2127,篇均下载量266.9,篇均提前天数142.5,单篇最高提前天数461(数据截至2024228日)。

网络首发是指先将论文优先网络出版,之后将论文全部或其根文本在期刊印刷版出版的出版方式。网络首发能缩短论文由于纸质版出版的周期长,以加速学术交流,提升办刊质量和学术影响力、促进数字出版转型。《土木工程学报》网络首发数据体现出学报始终坚持高质量发展,推动数字创新,持续提高影响力的办刊理念。

网络首发传播报表

网络首发总篇数

提前纸刊出版时间

网络首发期间下载量

在《土木工程学报》网络首发数据中,《基于改进YOLOv5的路面病害检测模型》成为首发期间单篇最高下载量的文章,网络首发时间为202327日,首发期间下载量2127次。文章收录于20242月正刊(已刊出),DOI10.15951/j.tmgcxb.22101073

基于改进YOLOv5的路面病害检测模型

何铁军 李华恩

东南大学智能运输系统研究中心

摘要:为进一步提高路面病害检测精度,文章在YOLOv5的基础上,提出针对路面病害特征改进的检测模型Pavement Damage-YOLO (PD-YOLO)PD-YOLO在网络结构中引入Space-to-depth层,以适应低分辨率和路面病害目标小的检测任务。此外,模型在池化层利用SPPFCSPC,在特征提取时获取不同的感受野,有效解决路面病害检测图像中目标大小差异较大的情况;在特征融合层引入ASFF模块使模型自适应学习不同特征间的联系,加强模型对病害目标区域的关注度。在对多组测试数据集测试中,与YOLOv5相比,PD-YOLO模型同时提高了检测结果的准确率、召回率、F1值以及mAP@0.5值,证明了PD-YOLO有着更强的特征提取能力和特征融合能力,在路面病害的检测上有更优越的表现。

关键词PD-YOLO;路面病害;目标检测;深度学习;SPD模块

(以上数据均来源于中国知网)

 

 
主办:中国土木工程学会 地址:北京三里河路9号建设部内

《土木工程学报》杂志社有限公司 版权所有 · 京ICP备05023187号
地址:北京三里河路9号建设部内 邮政编码:100835 电话/传真:010-57811488  E-mail:tumuxuebao@ccej.net